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Abstract

In [J. Qiu, C.-W. Shu, Runge–Kutta discontinuous Galerkin method using WENO limiters, SIAM Journal on Scientific
Computing 26 (2005) 907–929], Qiu and Shu investigated using weighted essentially non-oscillatory (WENO) finite volume
methodology as limiters for the Runge–Kutta discontinuous Galerkin (RKDG) methods for solving nonlinear hyperbolic
conservation law systems on structured meshes. In this continuation paper, we extend the method to solve two-dimensional
problems on unstructured meshes, with the goal of obtaining a robust and high order limiting procedure to simultaneously
obtain uniform high order accuracy and sharp, nonoscillatory shock transition for RKDG methods. Numerical results are
provided to illustrate the behavior of this procedure.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In [20], Qiu and Shu investigated using weighted essentially non-oscillatory (WENO) finite volume meth-
odology [16,14,11,13] as limiters for the Runge–Kutta discontinuous Galerkin (RKDG) finite element meth-
ods [6,5,4,3,7,8], for solving nonlinear hyperbolic conservation laws on structured meshes, with the goal of
obtaining a robust and high order limiting procedure to simultaneously achieve uniform high order accuracy
and sharp, nonoscillatory shock transition for the RKDG methods. In this continuation paper, we extend the
method to solve two-dimensional nonlinear hyperbolic conservation laws:
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ut þ f ðuÞx þ gðuÞy ¼ 0

uðx; y; 0Þ ¼ u0ðx; yÞ

�
ð1:1Þ
on two-dimensional unstructured meshes.
WENO schemes have been designed in recent years as a class of high order finite volume or finite differ-

ence schemes to solve hyperbolic conservation laws with the property of maintaining both uniform high
order accuracy and an essentially non-oscillatory shock transition. We have the third order finite volume
WENO schemes in one space dimension in [16], the third and fifth order finite difference WENO schemes
in multi-space dimensions with a general framework for the design of the smoothness indicators and nonlin-
ear weights in [14], and finite volume WENO schemes on unstructured and structured meshes in
[11,13,23,15,18]. WENO schemes are designed based on the successful ENO schemes in [12,25,26]. Both
ENO and WENO schemes use the idea of adaptive stencils in the reconstruction procedure based on the local
smoothness of the numerical solution to automatically achieve high order accuracy and a non-oscillatory
property near discontinuities.

The first discontinuous Galerkin (DG) method was introduced in 1973 by Reed and Hill [22], in the frame-
work of neutron transport (steady state linear hyperbolic equations). A major development of the DG method
was carried out by Cockburn et al. in a series of papers [6,5,4,3,7], in which they established a framework to
easily solve nonlinear time dependent hyperbolic conservation laws (1.1), using explicit, nonlinearly stable high
order Runge–Kutta time discretizations [25] and DG discretization in space with exact or approximate Rie-
mann solvers as interface fluxes and total variation bounded (TVB) limiter [24] to achieve non-oscillatory
properties for strong shocks. These schemes are termed RKDG methods.

An important component of RKDG methods for solving the conservation laws (1.1) with strong shocks
in the solutions is a nonlinear limiter, which is applied to detect discontinuities and control spurious oscil-
lations near such discontinuities. Many such limiters have been used in the literature on RKDG methods.
For example, we mention the minmod type TVB limiter [6,5,4,3,7], which is a slope limiter using a technique
borrowed from the finite volume methodology; the moment based limiter [1] and an improved moment lim-
iter [2], which are specifically designed for discontinuous Galerkin methods and work on the moments of the
numerical solution. These limiters tend to degrade accuracy when mistakenly used in smooth regions of the
solution.

In [20], Qiu and Shu initiated a study of using the WENO methodology as limiters for RKDG methods on
structured mesh. The following framework has been adopted:

Step 1. First, identify the ‘‘troubled cells”, namely those cells which might need the limiting procedure.
Step 2. Then, replace the solution polynomials in those troubled cells by reconstructed polynomials using the

WENO methodology which maintain the original cell averages (conservation), have the same orders
of accuracy as before, but are less oscillatory.

This technique works quite well in our one and two-dimensional test problems in [20] and in the followup
work [19,21] where the more compact Hermite WENO methodology was used in the troubled cells. More
recently, Luo et al. [17], following [19,21], developed a Hermite WENO-based limiter for the second order
RKDG method on unstructured meshes.

In this continuation paper, we extend the method to solve two dimensional problems on unstructured
meshes. We use the usual WENO reconstruction based on the cell averages of neighboring cells to reconstruct
the moments directly. This turns out to be a robust way to retain the original high order accuracy of the DG
method. We describe the details of this procedure for the second and third order DG methods in Section 2 and
present extensive numerical results in Section 3 to verify the accuracy and stability of this approach. Conclud-
ing remarks are given in Section 4.

2. WENO reconstruction as a limiter to the RKDG method on unstructured meshes

In this section we give the details of the procedure using the WENO reconstruction as a limiter for the
RKDG method.
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Given a triangulation consisting of cells Dj, PkðDjÞ denotes the set of polynomials of degree at most k

defined on Dj. Here k could actually change from cell to cell, but for simplicity we assume it is a constant over
the whole triangulation. In the DG method, the solution as well as the test function space is given by
V k

h ¼ fvðx; yÞ : vðx; yÞjDj
2 PkðDjÞg. We emphasize that the procedure described below does not depend on

the specific basis chosen for the polynomials. We adopt a local orthogonal basis over a target cell, such as
D0: fvð0Þl ðx; yÞ; l ¼ 0; . . . ;K; K ¼ ðk þ 1Þðk þ 2Þ=2� 1g:
vð0Þ0 ðx; yÞ ¼ 1;

vð0Þ1 ðx; yÞ ¼
x� x0ffiffiffiffiffiffiffiffi
jD0j

p ;

vð0Þ2 ðx; yÞ ¼ a21

x� x0ffiffiffiffiffiffiffiffi
jD0j

p þ y � y0ffiffiffiffiffiffiffiffi
jD0j

p þ a22;

vð0Þ3 ðx; yÞ ¼
ðx� x0Þ2

jD0j
þ a31

x� x0ffiffiffiffiffiffiffiffi
jD0j

p þ a32

y � y0ffiffiffiffiffiffiffiffi
jD0j

p þ a33;

vð0Þ4 ðx; yÞ ¼ a41

ðx� x0Þ2

jD0j
þ ðx� x0Þðy � y0Þ

jD0j
þ a42

x� x0ffiffiffiffiffiffiffiffi
jD0j

p þ a43

y � y0ffiffiffiffiffiffiffiffi
jD0j

p þ a44;

vð0Þ5 ðx; yÞ ¼ a51

ðx� x0Þ2

jD0j
þ a52

ðx� x0Þðy � y0Þ
jD0j

þ ðy � y0Þ
2

jD0j
þ a53

x� x0ffiffiffiffiffiffiffiffi
jD0j

p þ a54

y � y0ffiffiffiffiffi
D0

p þ a55; . . .
where ðx0; y0Þ and jD0j are the barycenter and the area of the target cell D0, respectively. Then we would need to
solve a linear system to obtain the values of a‘m by the orthogonality property:
Z

D0

vð0Þi ðx; yÞv
ð0Þ
j ðx; yÞdxdy ¼ widij ð2:1Þ
with wi ¼
R

D0
ðvð0Þi ðx; yÞÞ

2 dxdy:
The numerical solution uhðx; y; tÞ in the space V k

h can be written as:
uhðx; y; tÞ ¼
XK

l¼0

uðlÞ0 ðtÞv
ð0Þ
l ðx; yÞ for ðx; yÞ 2 D0
and the degrees of freedom uðlÞ0 ðtÞ are the moments defined by
uðlÞ0 ðtÞ ¼
1

wl

Z
D0

uhðx; y; tÞvð0Þl ðx; yÞdxdy; l ¼ 0; . . . ;K:
In order to determine the approximate solution, we evolve the degrees of freedom uðlÞ0 ðtÞ:
d

dt
uðlÞ0 ðtÞ ¼

1

wl

Z
D0

f ðuhðx; y; tÞÞ o

ox
vð0Þl ðx; yÞ þ gðuhðx; y; tÞÞ o

oy
vð0Þl ðx; yÞ

� �
dxdy

�

�
Z

oD0

ðf ðuhðx; y; tÞÞ; gðuhðx; y; tÞÞÞT � nvð0Þl ðx; yÞds
�
; l ¼ 0; . . . ;K: ð2:2Þ
where n is the outward unit normal of the triangle boundary oD0.
In (2.2) the integral terms can be computed either exactly or by suitable numerical quadratures which are

exact for polynomials of degree up to 2k for the element integral and up to 2k þ 1 for the edge integral. In this
paper, we use AG Gaussian points (AG ¼ 6 for k ¼ 1 and AG ¼ 7 for k ¼ 2) for the element quadrature and EG

Gaussian points (EG ¼ 2 for k ¼ 1 and EG ¼ 3 for k ¼ 2) for the edge quadrature:
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Z
D0

f ðuhðx; y; tÞÞ o

ox
vð0Þl ðx; yÞ þ gðuhðx; y; tÞÞ o

oy
vð0Þl ðx; yÞ

� �
dxdy

� jD0j
X

G

rG f ðuhðxG; yG; tÞÞ
o

ox
vð0Þl ðxG; yGÞ þ gðuhðxG; yG; tÞÞ

o

oy
vð0Þl ðxG; yGÞ

� �
ð2:3Þ

Z
oD0

ðf ðuhðx; y; tÞÞ; gðuhðx; y; tÞÞÞT � nvð0Þl ðx; yÞds

� joD0j
X

G

�rGðf ðuhð�xG; �yG; tÞÞ; gðuhð�xG; �yG; tÞÞÞT � nvð0Þl ð�xG; �yGÞ ð2:4Þ
where ðxG; yGÞ 2 D0 and ð�xG; �yGÞ 2 oD0 are the Gaussian quadrature points, and rG and �rG are the Gaussian
quadrature weights. Since the edge integral is on element boundaries where the numerical solution is discon-
tinuous, the flux ðf ðuhðx; y; tÞÞ; gðuhðx; y; tÞÞÞT � n is replaced by a monotone numerical flux. The simple Lax–
Friedrichs flux is used in all of our numerical tests. The semi-discrete scheme (2.2) is discretized in time by
a non-linear stable Runge–Kutta time discretization, e.g. the third-order version
uð1Þ ¼ un þ DtLðunÞ;

uð2Þ ¼ 3

4
un þ 1

4
uð1Þ þ 1

4
DtLðuð1ÞÞ;

unþ1 ¼ 1

3
un þ 2

3
uð2Þ þ 2

3
DtLðuð2ÞÞ:

ð2:5Þ
The method described above can compute solutions to (1.1), which are either smooth or have weak shocks
and other discontinuities, without further modification. If the discontinuities are strong, however, the scheme
will generate significant oscillations and even nonlinear instability. To avoid such difficulties, we borrow the
technique of a slope limiter from the finite volume methodology and use it after each Runge–Kutta inner stage
(or after the complete Runge–Kutta time step) to control the numerical solution.

In this paper, we will use the limiter adopted in [7] only to detect ‘‘troubled cells”. The main procedure is as
follows. We use ðxm‘

; ym‘
Þ; ‘ ¼ 1; 2; 3, to denote the midpoints of the edges on the boundary of the target cell

D0, and ðxbi ; ybi
Þ; i ¼ 1; 2; 3, to denote the barycenters of the neighboring triangles Di; i ¼ 1; 2; 3, as shown in

Fig. 2.1.
We then have
xm1
� xb0

¼ a1ðxb1
� xb0

Þ þ a2ðxb3
� xb0

Þ; ym1
� yb0

¼ a1ðyb1
� yb0

Þ þ a2ðyb3
� yb0

Þ ð2:6Þ
with nonnegative a1; a2, which depend only on ðxm1
; ym1
Þ and the geometry. We then define
0

1

2

3

11

12

21 22

31

32

m1

m2

m3

b1

b2

b3

b0

Fig. 2.1. The limiting diagram.
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~uhðxm1
; ym1

; tÞ � uhðxm1
; ym1

; tÞ � uð0Þ0 ðtÞ ð2:7Þ
Duðxm1

; ym1
; tÞ � a1ðuð0Þ1 ðtÞ � uð0Þ0 ðtÞÞ þ a2ðuð0Þ3 ðtÞ � uð0Þ0 ðtÞÞ ð2:8Þ
Using the TVB modified minmod function [24] defined as
~mða1; a2Þ ¼
a1 if ja1j 6 M jD0j

s minðja1j; ja2jÞ if s ¼ signða1Þ ¼ signða2Þ
0 otherwise

�
otherwise

8<
: ð2:9Þ
where M > 0 is the TVB constant whose choice is problem dependent, we can compute the quantity
~umod ¼ ~mð~uhðxm1
; ym1

; tÞ; cDuðxm1
; ym1

; tÞÞ ð2:10Þ
with c > 1 (we take c ¼ 1:5 in our numerical tests). If ~umod 6¼ ~uhðxm1
; ym1

; tÞ, D0 is marked as a ‘‘troubled cell”
for further reconstruction. This procedure is repeated for the other two edges of D0 as well. Since the WENO
reconstruction maintains high order accuracy in the troubled cells, it is less crucial to choose an accurate M.
We present in Section 3 numerical tests obtained with different choices of M.

For the troubled cells, we reconstruct the polynomial solutions while retaining their cell averages. In other
words, we reconstruct the degrees of freedom uðlÞ0 ðtÞ; l ¼ 1; . . . ;K and retain only the cell average uð0Þ0 ðtÞ.

For the k ¼ 1 case, we summarize the procedure to reconstruct the first order moments uð1Þ0 ðtÞ and uð2Þ0 ðtÞ in
the troubled cell D0 using the WENO reconstruction procedure. For simplicity, we relabel the ‘‘troubled cell”
and its neighboring cells as shown in Fig. 2.2.

Step 1. We select the big stencil as S ¼ fD0;D1;D2;D3;D11;D12;D21;D22;D31;D32g. Then we construct a qua-
dratic polynomial Pðx; yÞ to obtain a third order approximation of u by requiring that it has the same
cell average as u on the target cell D0, and matches the cell averages of u on the other triangles in the
set S n fD0g in a least-square sense, see [13].

Step 2. We divide S into nine smaller stencils:
S1 ¼ fD0;D1;D2g; S2 ¼ fD0;D2;D3g; S3 ¼ fD0;D3;D1g; S4 ¼ fD0;D1;D11g;
S5 ¼ fD0;D1;D12g; S6 ¼ fD0;D2;D21g; S7 ¼ fD0;D2;D22g;
S8 ¼ fD0;D3;D31g; S9 ¼ fD0;D3;D32g:
We then construct nine linear polynomials qiðx; yÞ, i ¼ 1; . . . ; 9, satisfying
1

jD‘j

Z
D‘

qiðx; yÞdxdy ¼ �u‘; for D‘ 2 Si: ð2:11Þ
0

1

2

3

11

12

21 22

31

32

Fig. 2.2. The big stencil S.
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Step 3. We find the combination coefficients, also called linear weights, denoted by cðlÞ1 ; . . . ; cðlÞ9 , l ¼ 1; 2,
satisfying
Z
D0

P ðx; yÞvð0Þl ðx; yÞdxdy ¼
X9

i¼1

cðlÞi

Z
D0

qiðx; yÞv
ð0Þ
l ðx; yÞdxdy; l ¼ 1; 2 ð2:12Þ
for the quadratic polynomial P ðx; yÞ defined before. The linear weights are achieved by asking for
min
X9

i¼1

ðcðlÞi Þ
2

 !
; l ¼ 1; 2: ð2:13Þ
By doing so, we can get the linear weights uniquely but can not guarantee their positivity. We use the
method introduced in [13,23] to overcome this difficulty.

Step 4. We compute the smoothness indicators, denote by bi, i ¼ 1; . . . ; 9, for the smaller stencils Si,
i ¼ 1; . . . ; 9, which measure how smooth the functions qiðx; yÞ, i ¼ 1; . . . ; 9 are in the target cell D0.
The smaller these smoothness indicators, the smoother the functions are in the target cell. We use
the same recipe for the smoothness indicators as in [14]:
bi ¼
Xk

j‘j¼1

jD0jj‘j�1

Z
D0

oj‘j

ox‘1oy‘2
qiðx; yÞ

 !2

dxdy ð2:14Þ
where ‘ ¼ ð‘1; ‘2Þ.
Step 5. We compute the non-linear weights based on the smoothness indicators:
xi ¼
�xiP9
‘¼1 �x‘

; �x‘ ¼
c‘

ðeþ b‘Þ
2
: ð2:15Þ
Here e is a small positive number to avoid the denominator to become zero. We take e ¼ 10�6 in our
computation.

The moments of the reconstructed polynomial are then given by:
uðlÞ0 ðtÞ ¼
1R

D0
ðvð0Þl ðx; yÞÞ

2 dxdy

X9

i¼1

xðlÞi

Z
D0

qiðx; yÞv
ð0Þ
l ðx; yÞdxdy; l ¼ 1; 2: ð2:16Þ
For the k ¼ 2 case, the procedure to reconstruct the first and second order moments uð1Þ0 ðtÞ, uð2Þ0 ðtÞ, uð3Þ0 ðtÞ,
uð4Þ0 ðtÞ and uð5Þ0 ðtÞ in the troubled cell D0 is analogous to that for the k ¼ 1 case. The troubled cell and its neigh-
boring cells are shown in Fig. 2.3.

Step 1. We select the big stencil as T ¼ fD0;D1;D2;D3;D11;D12;D21;D22;D31;D32;D112;D121;D212;D221;D312;
D321g. Then we construct a fourth degree polynomial Qðx; yÞ to obtain a fifth order approximation
of u by requiring that it has the same cell average as u on the target cell D0 and matches the cell aver-
ages of u on the other triangles in the set T n fD0g in a least-square sense.

Step 2. We divide T into nine smaller stencils:
;

T 1 ¼ fD0;D1;D11;D12;D3;D32g; T 2 ¼ fD0;D1;D11;D12;D2;D21g; T 3 ¼ fD0;D2;D21;D22;D1;D12g;
T 4 ¼ fD0;D2;D21;D22;D3;D31g; T 5 ¼ fD0;D3;D31;D32;D2;D22g; T 6 ¼ fD0;D3;D31;D32;D1;D11g
T 7 ¼ fD0;D1;D11;D12;D112;D121g; T 8 ¼ fD0;D2;D21;D22;D212;D221g;
T 9 ¼ fD0;D3;D31;D32;D312;D321g:
We can then construct quadratic polynomials qiðx; yÞ, i ¼ 1; . . . ; 9, which satisfy the following conditions
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Fig. 2.3. The big stencil T.
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1

jD‘j

Z
D‘

qiðx; yÞdxdy ¼ �u‘; for D‘ 2 T i: ð2:17Þ
The remaining steps 3, 4 and 5 are the same as those for the k ¼ 1 case. Finally, the moments of the recon-
structed polynomial are given by
uðlÞ0 ðtÞ ¼
1R

D0
ðvð0Þl ðx; yÞÞ

2 dxdy

X9

i¼1

xðlÞi

Z
D0

qiðx; yÞv
ð0Þ
l ðx; yÞdxdy; l ¼ 1; 2; 3; 4; 5: ð2:18Þ
3. Numerical results

In this section we provide numerical results to demonstrate the performance of the WENO reconstruction
limiters for the RKDG methods on unstructured meshes described in Section 2.

We first test the accuracy of the schemes in two-dimensional problems.

Example 3.1. We solve the following nonlinear scalar Burgers equation in two dimensions:
ut þ
u2

2

� �
x

þ u2

2

� �
y

¼ 0 ð3:1Þ
with the initial condition uðx; y; 0Þ ¼ 0:5þ sinðpðxþ yÞ=2Þ and periodic boundary conditions in both direc-
tions. We compute the solution up to t ¼ 0:5=p, when the solution is still smooth. For this test case, the coars-
est mesh we use is shown in Fig. 3.1. The errors and numerical orders of accuracy for the RKDG method with
the WENO limiter comparing with the original RKDG method without limiter are shown in Table 3.1. In
order to magnify the possible effect of the WENO limiter on accuracy, we have deliberately chosen a small
TVB constant M ¼ 0:01 so that many cells are identified as ‘‘troubled cells”. We can see that the WENO
limiter keeps the designed order of accuracy, however the magnitude of the errors is larger than that of the
original RKDG method on the same mesh.

Example 3.2. We solve the Euler equations
o

ot

q

qu

qv

E

0
BBB@

1
CCCAþ o

ox

qu

qu2 þ p

quv

uðE þ pÞ

0
BBB@

1
CCCAþ o

oy

qv

quv

qv2 þ p

vðE þ pÞ

0
BBB@

1
CCCA ¼ 0 ð3:2Þ
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Fig. 3.2. 2D-Euler equations. Mesh. Triangle: h ¼ 2=10.
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Fig. 3.1. Burgers equation. Mesh. Triangle: h ¼ 4=10.

Table 3.1
ut þ u2

2

� �
x
þ u2

2

� �
y
¼ 0. uðx; y; 0Þ ¼ 0:5þ sinðpðxþ yÞ=2Þ

h DG with WENO limiter DG without limiter

L1 error Order L1 error Order L1 error Order L1 error Order

P 1 4/10 5.11E � 2 5.28E � 1 2.41E � 2 2.56E � 1
4/20 1.31E � 2 1.96 1.91E � 1 1.46 6.07E � 3 1.99 7.54E � 2 1.77
4/40 3.21E � 3 2.02 5.05E � 2 1.92 1.53E � 3 1.98 2.14E � 2 1.81
4/80 7.80E � 4 2.04 1.43E � 2 1.81 3.91E � 4 1.97 5.71E � 3 1.91
4/160 1.59E � 4 2.29 3.61E � 3 1.99 9.87E � 5 1.99 1.55E � 3 1.88

P 2 4/10 6.91E � 3 1.40E � 1 1.70E � 3 5.28E � 2
4/20 8.60E � 4 3.01 2.31E � 2 2.60 2.45E � 4 2.79 8.19E � 3 2.69
4/40 1.05E � 4 3.03 4.23E � 3 2.45 3.17E � 5 2.95 1.55E � 3 2.39
4/80 1.60E � 5 2.71 6.81E � 4 2.63 4.01E � 6 2.98 2.37E � 4 2.71
4/160 2.10E � 6 2.93 1.01E � 4 2.75 5.03E � 7 3.00 3.20E � 5 2.89

Periodic boundary conditions in both directions. t ¼ 0:5=p. L1 and L1 errors. RKDG with the WENO limiter (M ¼ 0:01) compared to
RKDG without limiter. The mesh points on the boundary are uniformly distributed with cell length h.
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Table 3.2
2D-Euler equations: initial data qðx; y; 0Þ ¼ 1þ 0:2 sinðpðxþ yÞÞ, uðx; y; 0Þ ¼ 0:7, vðx; y; 0Þ ¼ 0:3, and pðx; y; 0Þ ¼ 1

h DG with WENO limiter DG without limiter

L1 error Order L1 error Order L1 error Order L1 error Order

P 1 2/10 3.76E � 2 8.37E � 2 4.39E � 3 2.23E � 2
2/20 1.16E � 2 1.69 3.50E � 2 1.26 1.03E � 3 2.08 5.42E � 3 2.04
2/40 2.36E � 3 2.31 1.25E � 2 1.48 2.54E � 4 2.02 1.29E � 3 2.06
2/80 3.99E � 4 2.56 3.83E � 3 1.70 6.38E � 5 1.99 3.27E � 4 1.98
2/160 7.33E � 5 2.44 1.16E � 3 1.72 1.62E � 5 1.97 8.48E � 5 1.95

P 2 2/10 4.01E � 3 1.76E � 2 4.48E � 4 5.94E � 3
2/20 6.50E � 4 2.63 3.47E � 3 2.34 6.17E � 5 2.86 1.14E � 3 2.38
2/40 8.37E � 5 2.96 4.94E � 4 2.81 7.05E � 6 3.12 1.94E � 4 2.56
2/80 1.01E � 5 3.04 6.60E � 5 2.91 7.76E � 7 3.18 2.87E � 5 2.76
2/160 1.26E � 6 3.01 7.09E � 6 3.21 1.10E � 7 2.81 3.62E � 6 2.99

Periodic boundary conditions in both directions. t ¼ 2:0. L1 and L1 errors. RKDG with the WENO limiter (M ¼ 0:01) compared to
RKDG without limiter. The mesh points on the boundary are uniformly distributed with cell length h.

Fig. 3.3. Burgers equation. t ¼ 1:5=p. The surface of the solution. Triangle: h ¼ 4=80. RKDG with the WENO limiter, M ¼ 0:01. Left:
second order (k ¼ 1); right: third order (k ¼ 2).
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Fig. 3.4. Double Mach reflection problem. Sample mesh. The mesh points on the boundary are uniformly distributed with cell length
h ¼ 1=10.
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in which q is the density, u is the x-direction velocity, v is the y-direction velocity, E is the total energy, and
p ¼ ðc� 1ÞðE � 1

2
qðu2 þ v2ÞÞ is the pressure, with c ¼ 1:4. The initial conditions are: qðx; y; 0Þ ¼ 1þ

0:2 sinðpðxþ yÞÞ, uðx; y; 0Þ ¼ 0:7, vðx; y; 0Þ ¼ 0:3, pðx; y; 0Þ ¼ 1. Periodic boundary conditions are applied in
both directions. The exact solution is qðx; y; tÞ ¼ 1þ 0:2 sinðpðxþ y � tÞÞ. We compute the solution up to
t ¼ 2. For this test case, the coarsest mesh we use is shown in Fig. 3.2. The errors and numerical orders of
accuracy of the density for the RKDG method with the WENO limiter comparing with the original RKDG
method without a limiter are shown in Table 3.2. Similar to the previous example, we have again chosen a
small TVB constant M ¼ 0:01 so that many cells are identified as ‘‘troubled cells”. We can see that the WENO
limiter again keeps the designed order of accuracy, with the magnitude of the errors larger than that of the
original RKDG method on the same mesh.
Fig. 3.5. Double Mach reflection problem. Second order (k ¼ 1) RKDG with the WENO limiter. Thirty equally spaced density contours
from 1.5 to 22.7. The mesh points on the boundary are uniformly distributed with cell length h ¼ 1=300. Top: the TVB constant M ¼ 1;
middle: M ¼ 50; bottom: M ¼ 100.



4340 J. Zhu et al. / Journal of Computational Physics 227 (2008) 4330–4353
We now test the performance of the RKDG method with the WENO limiters for problems containing
shocks. For a direct comparison with the RKDG method using the original minmod TVB limiter, we refer
to the results in [5,4,3,7]. In general, the results are comparable when M is chosen adequately. When M is cho-
sen too small, however, the RKDG method with the WENO limiter produces much better results than those
with the original minmod TVB limiter.

Example 3.3. We solve the same nonlinear Burgers equation (3.1) with the same initial condition
uðx; y; 0Þ ¼ 0:5þ sinðpðxþ yÞ=2Þ, except that we plot the results at t ¼ 1:5=p when a shock has already
appeared in the solution. The solutions are shown in Fig. 3.3. We can see that the schemes give non-oscillatory
shock transitions for this problem.

Example 3.4. Double Mach reflection problem. This model problem is originally from [27]. We solve the Euler
equations (3.2) in a computational domain of a tube which contains a 30� wedge. The shock moves with a
Mach number of 10, the undisturbed air ahead the shock has a density of 1.4 and a pressure of 1 and the left
hand side of the shock has a density of 8, velocity of 8.25 and pressure of 116.5. The results are shown at
Fig. 3.6. Double Mach reflection problem. Third order (k ¼ 2) RKDG with the WENO limiter. Thirty equally spaced density contours
from 1.5 to 22.7. The mesh points on the boundary are uniformly distributed with cell length h ¼ 1=300. Top: the TVB constant M ¼ 1;
middle: M ¼ 50; bottom: M ¼ 100.
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Fig. 3.11. NACA0012 airfoil mesh zoom in.

Table 3.3
NACA0012 airfoil problem

M1 ¼ 0:8, angle of attack a ¼ 1:25� M1 ¼ 0:85, angle of attack a ¼ 1�

P 1 TVB constant M 1 10 100 TVB constant M 1 10 100
Maximum percentage 30.0 20.4 9.83 Maximum percentage 30.9 21.9 11.1
Average percentage 19.3 11.6 5.45 Average percentage 20.9 14.0 7.01

P 2 TVB constant M 1 10 100 TVB constant M 1 10 100
Maximum percentage 52.1 43.2 17.9 Maximum percentage 52.8 43.8 19.0
Average percentage 30.9 16.6 6.77 Average percentage 33.5 21.0 8.71

The maximum and average percentages of troubled cells subject to the WENO limiting.
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whole region ½0; 3� � ½0; 1� in Fig. 3.8. In Figs. 3.9 and 3.10, we show 30 equally spaced density contours from
0.32 to 6.15 computed by the second and third order RKDG schemes with the WENO limiters, for the TVB
constant M ¼ 1, M ¼ 50 and M ¼ 100, respectively. We can clearly observe that the third order scheme gives
better resolution than the second order scheme, especially for the resolution of the physical instability and roll-
up of the contact line.

Example 3.6. We consider inviscid Euler transonic flow past a single NACA0012 airfoil configuration with
Mach number M1 ¼ 0:8, angle of attack a ¼ 1:25� and with M1 ¼ 0:85, angle of attack a ¼ 1�. The compu-
tational domain is ½�15; 15� � ½�15; 15�. The mesh used in the computation is shown in Fig. 3.11, consisting of
9340 elements with the maximum diameter of the circumcircle being 1.4188 and the minimum diameter being
0.0031 near the airfoil. The mesh uses curved cells near the airfoil. The second order RKDG scheme with the
WENO limiter and the TVB constant M ¼ 1, M ¼ 10 and M ¼ 100, and the third order scheme with M ¼ 1,
M ¼ 10 and M ¼ 100, are used in the numerical experiments. In Table 3.3 we document the percentage of cells
declared to be ‘‘troubled cells” for different orders of accuracy and different TVB constant M in the minmod

limiter to identify troubled cells. We can see that only a small percentage of cells are declared as ‘‘troubled
cells” for large M. Mach number and pressure distributions are shown in Figs. 3.12–3.14 and 3.15, respec-
tively. We can see that the third order scheme has better resolution than the second order one. The troubled
cells identified at the last time step are shown in Figs. 3.16 and 3.17. Clearly, fewer cells are identified as ‘‘trou-
bled cells” for larger M. Finally, the reduction of density residual as a function of the number of iterations is
shown in Figs. 3.18 and 3.19.
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Fig. 3.15. NACA0012 airfoil. M1 ¼ 0:85, angle of attack a ¼ 1�. Pressure distribution. RKDG with the WENO limiter. Left: second
order (k ¼ 1); right: third order (k ¼ 2). Top: the TVB constant M ¼ 1; middle: M ¼ 10; bottom: M ¼ 100.
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Fig. 3.16. NACA0012 airfoil. M1 ¼ 0:8, angle of attack a ¼ 1:25�. Troubled cells. Circles denote triangles which are identified as
‘‘troubled cells” subject to the WENO limiting. RKDG with WENO limiter. Left: second order (k ¼ 1); right: third order (k ¼ 2). Top: the
TVB constant M ¼ 1; middle: M ¼ 10; bottom: M ¼ 100.
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Fig. 3.18. NACA0012 airfoil. M1 ¼ 0:8, angle of attack a ¼ 1:25�. Reduction of density residual as a function of the number of iterations.
RKDG with WENO limiter. Left: second order (k ¼ 1); right: third order (k ¼ 2). Top: the TVB constant M ¼ 1; middle: M ¼ 10; bottom:
M ¼ 100.
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Fig. 3.19. NACA0012 airfoil. M1 ¼ 0:85, angle of attack a ¼ 1�. Reduction of density residual as a function of the number of iterations.
RKDG with WENO limiter. Left: second order (k ¼ 1); right: third order (k ¼ 2). Top: the TVB constant M ¼ 1; middle: M ¼ 10; bottom:
M ¼ 100.
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